Quants

Interest Rates, Present Value, and Future Value Time Value of Money in Finance

1. Nominal risk-free rate $=$ Real risk-free rate + Expected inflation rate .
2. Additive Model: Nominal Rate $=$ Inflation Premium + Real Rate
3. Multiplicative Model: $(1+$ Nominal Rate $)=(1+$ Inflation Rate $)(1+$ Real Rate $)$
4. Required interest rate $=$ Nominal risk-free rate + default risk premium + liquidity premium +maturity risk premium.
5. Effective Annual Rate $(E A R)=(1+\text { periodic rate })^{m}-1$
periodic rate $=$ stated annual rate $/ \mathrm{m}$
$m=$ no. of compounding periods per year
6. For continuous compounding, $E A R=e^{r \dagger}-1$
7. Single Cash Flow: $\mathrm{PV}=\frac{F V}{(1+r)^{n}}$ or $\mathrm{FV}=\mathrm{PV}(1+r)^{n}$
8. $F V=P V(1+I / y)^{N}$
9. $P V_{\text {perpetuity }}=\frac{\mathrm{PMT}}{\mathrm{I} / \mathrm{y}}$

Discounted Cash Flow Applications

1. $N P V=P V_{\text {(inflows) }}-P V_{\text {(outflows) }}$
2. Holding Period Return $(H P R)=\frac{\text { Ending value-Beginning value }}{\text { Beginning value }} \operatorname{Or} \frac{\mathrm{P}_{1}-\mathrm{P}_{0}+\mathrm{D}}{\mathrm{P}_{0}}$
3. Money Weighted Rate of Return (MWROR) = IRR (depends on magnitude and timing)
4. Time Weighted Rate of Return (TWROR)
$=\left[\left(1+r_{1}\right)\left(1+r_{2}\right) \ldots .\left(1+r_{n}\right)\right]^{1 / n}-1$
Where, $\left(1+r_{1}\right)=$ HPR
5. Bank Discount Yield (BDY) $=\frac{\mathrm{F}-\mathrm{P}}{\mathrm{F}} \times \frac{360}{\mathrm{n}}$
6. Holding Period Yield (HPY) $=\frac{F-P}{P} \times 100$ Or $\frac{P_{1}-P_{0}+D_{1}}{P_{0}}=\frac{P_{1}+D_{1}}{P_{0}}-1$
7. Effective Annual Yield (EAY) $=(1+\mathrm{HPY})^{\frac{365}{n}-1}$
8. (Annualized HPY \& annual compounding)
\therefore HPY $=(E A Y+1)^{n / 365}-1$
9. Money Market Yield (MMY) $=$ HPY $\times \frac{360}{n}$ [Annual HPY in multiplicative fashion]
10. Bond Equivalent Yield $(B E Y)=2 \times$ semiannual discount rate (per annum compounded semiannually) $=$ $\left[(1+E A Y)^{\frac{1}{2}}-1\right] \times 2$

Organizing, Visualizing, and Describing Data

Statistical Measures of Asset Returns

1. Population mean $(\mu)=\frac{\sum_{i=1}^{N} X_{i}}{N}$; where N is population size

Sample mean $(\bar{X})=\frac{\sum_{i=1}^{N} X_{i}}{n}$; when n is sample size
2. Sum of mean deviations $=\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)=0$
3. Geometric mean $(G M)=\sqrt[n]{\left(x_{1} * x_{2} \ldots x_{n}\right)}$

Geometric mean return $\left(R_{g}\right): 1+R_{g}=\sqrt[n]{\left(1+R_{1}\right)\left(1+R_{2}\right) \ldots .\left(1+R_{n}\right)}$
$A M \geq G M[A M-G M$ increase as the dispersion of the observations increase.]
$A M=G M$ [When all observations are equal]
4. Harmonic mean $(H M)=\frac{\mathrm{N}}{\sum_{\mathrm{i}=1 \frac{1}{\mathrm{x}}}^{\mathrm{N}}}$ (average cost of shares purchase over time)
$A M>G M>H M$ (dollar cost averaging uses investing same amount every time period in a share; average price will be lowest as $H M$ is < $A M$ or $G M$)
5. $L y=(n+1) \frac{y}{100}$ [Quartiles, Deciles and Percentiles]
6. Range $=$ Maximum Value - Minimum Value
7. Mean Absolute Deviation (MAD) $=\frac{\sum_{i=1}^{N}|x i-\bar{x}|}{N}=\frac{\sum|x-\bar{x}|}{N}$
8. Population variance, $\sigma^{2}=\frac{\sum_{i=1}^{N}(\mathrm{x}-\mu)^{2}}{\mathrm{~N}}$
9. Population Standard Deviation $(\sigma)=\sqrt{\frac{\sum_{i=1}^{N}(\mathrm{x}-\mu)^{2}}{\mathrm{~N}}}$
$\sigma>$ MAD
10. $S^{2}=\frac{\sum_{i=1}^{N}(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{~N}-1}$
11. $K=\frac{\sum_{i=1}^{N} \mathrm{x}-\mu}{\sigma}$

Standardizing a variable converts the mean into 0 and Standard Deviation into 1
12. Chebyshev's inequality / Bienaymé Chebyshev's Theorem
$\%$ of observations that lie within K standard deviation of mean is at least $=1-\frac{1}{\mathrm{~K}^{2}}$
i.e., \min Probability that variable will lie between $\mu \pm K \sigma=1-\frac{1}{K^{2}}$
(Applicable for all distribution) $(K>1)$
13. Coefficient of variation $(C V)=\frac{\sigma}{\mu} \times 100 O R\left(\frac{S_{\mathrm{x}}}{\overline{\mathrm{x}}} \times 100\right)$
14. Sharpe ratio (Reward to variability ratio/SR) $=\frac{\overline{\mathrm{R}}_{\mathrm{p}}-\mathrm{R}_{\mathrm{f}}}{\sigma_{\mathrm{p}}}$
15. Symmetrical: Mean $=$ Median $=$ Mode

Negative skewness: Mean < Median < Mode
16. Skewness Extent to which a distribution is not symmetrical

Coefficient of Skewness $\left(S_{k}\right)=\frac{(x-\bar{x})^{3}}{n * S D^{3}}=\frac{\text { Third Moment }}{S D^{3}}$

<0
$=0$
0>
$\left|S_{k}\right|>0.5$ (considered significant levels of Skewness)
17. Kurtosis: Degree to which a distribution is more / less peaked

Coefficient of Kurtosis $=\frac{\Sigma(x-\overline{-})^{4}}{n * S D^{4}}=\frac{\text { Forth Moment }}{{S D^{4}}^{4}}$

Leptokurtic	Mesokurtic
(More peaked	(Normal
Fat tails)	Distribution)

Platykurtic
(Less peaked
Thin Tails)

Excess Kurtosis $=$ Normal distribution with Kurtosis of 3

Excess Kurtosis >1 [considered significant]

Probability Concepts
 Probability Trees and Conditional Expectations Portfolio Mathematics

1. Probability $=\frac{\text { no of favourable outcomes }}{\text { total possible outcomes }}$
2. $P(A) \Rightarrow$ Marginal / Unconditional Probability
$P(A \cap B) \Rightarrow$ Joint Probability A and B
$P(A \cup B) \Rightarrow$ Total Probability A or B
$P(B \mid A) \Rightarrow$ Conditional Probability of B given that A has occurred
3. $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
$\operatorname{Or} P(A \cap B)=P(A \mid B) \cdot P(B)$
(Multiplication rule of probability)
4. $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(Addition rule)
5. For, mutually exclusive event, $P(A \cap B)=0$

For, independent event, $P(A \cap B)=P(A) P(B)$
Also, $P(A \mid B)=P(A)$ or $P(B \mid A)=P(B)$
6. $P(R)=P\left(R \mid S_{1}\right) \times P\left(S_{1}\right)+P\left(R \mid S_{2}\right) \times P\left(S_{2}\right)+P\left(R \mid S_{n}\right) \times P\left(S_{n}\right)$

Where $\left\{\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots . \mathrm{S}_{\mathrm{n}}\right\}$ is mutually exclusive \& exhaustive [total probability rule]
7. BAYES' THEOREM - Posterior Probability
$P(A \mid X)=\frac{P(A \cap X)}{P(A \cap X)+P(B \cap X)}=\frac{P(A) * P(X \mid A)}{P(A) \cdot P(X \mid A)+P(B) \cdot(X \mid B)}$

OR

Common Probability Distribution

Appendices

Simulation Methods

1. Expected value $E(x)=$ Weighted average of all possible outcomes $\sum P X$
2. $\sigma^{2}=\sum \mathrm{P} \cdot(\mathrm{X}-\overline{\mathrm{X}})^{2}$
3. $\operatorname{Cov}\left(R_{A}, R_{B}\right)=\sum P(S) \times\left[R_{A}-E\left(R_{A}\right)\right]\left[R_{B}-E\left(R_{B}\right)\right]$
4. Correlation $\left(\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{j}}\right)=\frac{\operatorname{Cov}\left(\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{j}}\right)}{\sigma_{\mathrm{R}_{\mathrm{i}} * \sigma_{\mathrm{i}}}}$
5. Weight $\left(\mathrm{W}_{\mathrm{i}}\right)=\frac{\mathrm{MV} \text { of investment in Asseet }}{\text { MV of the portfolio }}$
6. Expected value of portfolio composed of n asset : $E\left(R_{P}\right)=W_{1} E\left(R_{1}\right)+W_{2} E\left(R_{2}\right)+\ldots .+W_{n} E\left(R_{n}\right)$
7. $\operatorname{Var}\left(R_{p}\right)$ for a two-asset portfolio $=W_{A} \sigma_{R_{B}}^{2}+W_{B} \sigma_{R_{B}}^{2}+2 W_{A} W_{B} \operatorname{cov}\left(R_{A} R_{B}\right)$

Variance of n asset portfolio will have $n(n-1) / 2$
Unique $\operatorname{cov}\left(\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}\right)$ as $\operatorname{cov}\left(\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}\right)=\operatorname{cov}\left(\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{A}}\right)$
8. $\operatorname{Var}\left(\mathrm{R}_{\mathrm{P}}\right)$ for a 3 asset portfolio $=\mathrm{W}_{\mathrm{A}}^{2} \sigma_{\mathrm{R}_{A}}^{2}+\mathrm{W}_{\mathrm{B}}^{2} \sigma_{\mathrm{R}_{\mathrm{B}}}^{2}+\mathrm{W}_{\mathrm{C}}^{2} \sigma_{\mathrm{R}_{\mathrm{C}}}^{2}+2\left[\mathrm{~W}_{\mathrm{A}} \mathrm{W}_{\mathrm{B}} \operatorname{cov}\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{B}}\right)+\mathrm{W}_{\mathrm{A}} \mathrm{W}_{\mathrm{C}} \operatorname{cov}\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{C}}\right)+\right.$ $\left.W_{B} W_{C} \operatorname{cov}\left(R_{B} R_{C}\right)\right]$
$\operatorname{Cov}\left(\mathrm{R}_{\mathrm{A}} \mathrm{R}_{\mathrm{A}}\right)=$ Variance R_{A} or $\sigma_{\mathrm{R}_{\mathrm{A}}}^{2}$
9. Probability of function $P(x)=P(X=x)$ (for discrete variables)
$\Rightarrow 0 \leq p(x) \leq 1$
$\Rightarrow \sum \mathrm{P}(\mathrm{x})=1$
10. Cumulative distribution function $\operatorname{CDFF}(x)=P(X \leq x)$
11. Bernoulli trials: $\mathrm{P}(\mathrm{x})=\mathrm{n}_{\mathrm{C}_{\mathrm{x}}} \mathrm{p}^{\mathrm{x}}(1-\mathrm{p})^{\mathrm{n}-\mathrm{x}}$
12. In Binominal Distribution,

Df, $P<0.5$ + ve Skewness
$P=0.5$ Symmetrical
P>0.5 -ve Skewness
Expected value of a Binominal Random Variable $\Rightarrow E(X)=n p$
Variance of a Binominal Random Variable \Rightarrow Variance of $X=n p(1-p)$
Effective annual rate $\Rightarrow e^{R_{c c}}$
$\ln \left(\frac{S_{1}}{S_{0}}\right)=\ln (1+H P R)=R_{c c}$ (rate of continuous compounding)
13. $Z=\frac{\text { observation-population mean }}{\text { S.D. }}=\frac{\bar{x}-\mu}{\sigma}$
90% confidence internal, $\bar{x}-1.65 s$ to $\bar{x}+1.65 s$
95\% confidence internal, $\bar{x}-1.96 s$ to $\bar{x}+1.96 s$
99% confidence internal, $\bar{x}-2.58 s$ to $\bar{x}+2.58 s$
14. Roy's Safety-First Ratio (SFR) $=\frac{\mathrm{E}\left(\mathrm{R}_{\mathrm{P}}\right)-\mathrm{R}_{\text {min }}}{\sigma_{\mathrm{P}}}$ (higher the better) $R_{\text {min }}=$ threshold level

If threshold level $=$ Risk free rate of return, i.e. $R_{\text {min }}=R_{f}, S F R=$ Sharpe's Ratio

Sampling and Estimation
 Estimation and Inference

1. Sample error of the mean $=$ Sample mean - Population mean
$=\overline{\mathrm{x}}-\mu$
2. Standard error of sample mean $\left(\sigma_{\bar{x}}\right)$
$=\frac{\sigma}{\sqrt{n}}$ (If σ is known)
$=\frac{s}{\sqrt{n}}$ (If σ is not known)
3. Confidence Interval: $\overline{\mathrm{x}} \pm \mathrm{Z} \alpha / 2 \frac{\sigma}{\sqrt{\mathrm{n}}}$
α-Level of significance (for 3 distribution)
4. Confidence Interval: $\overline{\mathrm{x}} \pm \mathrm{t} \alpha / 2 \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}$ [σ not known]
t is calculated as $\mathrm{df}(\mathrm{n}-1) \rightarrow \alpha / 2$

Basics of Hypothesis Testing

Hypothesis Testing
Parametric and Non-Parametric Tests of Independence

1. Equality of mean (independent samples)
t statistic of $\overline{\mathrm{X}}_{1}-\overline{\mathrm{x}}_{2}=\frac{\left(\overline{\mathrm{X}}_{1}-\overline{\mathrm{X}}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sigma_{\mathrm{X}_{1}}-\mathrm{X}_{2}}$
Where, $\sigma_{\mathrm{x}_{1}-\mathrm{x}_{2}}=\sqrt{\frac{\mathrm{s}_{\mathrm{p} 2}}{\mathrm{n}_{1}}+\frac{\mathrm{S}_{\mathrm{p} 2}}{\mathrm{n}_{2}}}$
$S_{p^{2}}^{2}=\frac{\left(n_{1}-1\right) S_{1}^{2}+\left(n_{2}-1\right) S_{2}^{2}}{n_{1}+n_{2}-2}$
2. Equality of mean: Dependent Samples
$t=\frac{\overline{\mathrm{d}}-\mu}{\mathrm{S}_{\overline{\mathrm{d}}}}$
Where, $\overline{\mathrm{d}}=$ Mean of differences between the samples; $\mathrm{S}_{\overline{\mathrm{d}}}=\frac{\text { Standard deviation of the differences }}{\sqrt{\bar{n}}}$
3. Testing of variance (Chi square statistic):
X^{2} Statistic $=\frac{(\mathrm{n}-1) \mathrm{S}^{2}}{\sigma^{2}}$
Where, $S^{2}=$ Sample variance
$\sigma^{2}=$ Hypothesized value for sample variance.
4. Testing of equality of variance (F distribution)

Fstatistic $=\frac{S_{1}^{2}}{S_{2}^{2}}$

Economics

Topics in Demand and Supply Analysis

1. Own Price Elasticity $=\frac{\% \Delta Q}{\% \Delta P}$
2. Cross price Elasticity of Demand: $\frac{\% \Delta Q_{x}}{\% \Delta P_{y}}$
3. Income Elasticity of Demand: $\frac{\% \Delta Q_{D}}{\% \Delta Y}$
4. Own Price Elasticity > 1: demand is elastic
5. Own Price Elasticity < 1: demand is inelastic
6. Cross price Elasticity < O: related good is complement
7. Cross price Elasticity >0: related good is a substitute
8. Income Elasticity < 0: good is an inferior good
9. Income Elasticity >0: good is an normal good
10. Accounting Profit: TR - Accounting Cost
11. Economic Profit : TR - (AC + Implicit cost)
12. $\mathrm{TCV}=$ Wages \times labour
13. $\mathrm{AVC}=\frac{\mathrm{TVC}}{\mathrm{Q}}=\frac{\mathrm{WxL}}{\mathrm{Q}}=\frac{\mathrm{W}}{(\mathrm{Q} / \mathrm{L})}=\frac{\mathrm{W}}{\mathrm{AP}_{\mathrm{L}}}$
14. $\mathrm{AVC} \propto \frac{1}{\mathrm{AP}_{\mathrm{L}}}$

The Firm \& Market Structures

1. Perfect Competition \rightarrow Firm faces infinitely elastic demand
$M R=A R=P=D$
(Price is determined by the market supply and demand.)
2. $\quad M R=P\left(1-\frac{1}{\mathrm{E}_{\mathrm{p}}}\right)$
3. $\mathrm{HHI}=\Sigma(\text { market share })^{2}$
4. $N_{\text {firm }}=\Sigma$ (market share)

Aggregate Output, Price \& Economic Growth

1. GDP Deflator $=\frac{\text { Nominal GDP }}{\text { Real GDP }} \times 100$
2. Per capita Real GDP $=\frac{\text { Real GDP }}{\text { Population }}$
3. GDP:

Under Expenditure Approach

$C+I+G+(X-M)$
Under Income Approach
NI + Dep $(C C A)+$ Statistical Discrepancy or $C+S+T$
4. National Income

Compensation of Employees (Wages/COE) + Interest Income + Rent + Corporate \& Govt.
Enterprise Profit before Taxes+ Unincorporated Business Net Income + Indirect Business
Taxes - Subsidies
5. Personal Income

National Income + Transfer payment to household

- Taxes (Indirect Business \& Corporate)
- Undistributed corporate profits

6. Potential GDP $=$ aggregate working hours \times labor paid

Growth in potential GDP = growth in labor force + growth in labor productivity

$\underset{\text { (Savings) }}{\mathrm{S}}=\underset{\text { (Investment) }}{\mathrm{I}}+\underset{$| (Fiscal |
| :---: |
| balance) |$}{(\mathrm{G}-\mathrm{T})}+\underset{\text { (Trade }}{\text { balance) }}$ (X-M)

7. Personal Disposable Income $=$ Personal Income - Personal Taxes.
8. Sustainability of Economic Growth:

Potential GDP = aggregate hours worked \times labor productivity
Growth in Potential GDP = growth in labor force + growth in labor productivity.
9. Production Function:

Total $Y=A \times f(L, K)$
10. Production per worker basis:
$y / L=A \times f\left(\frac{k}{L}\right)$

Introduction to Business Cycle
 Understanding Business Cycle

1. Unemployed Rate $=\%$ of people in labor force who are unemployed
*people who are voluntarily unemployed, not include
2. Participation Ratio $=\%$ of working age population who are employed or actively seeking employment.
3. CPI (best indication) $=\frac{\text { cost of basket current prices }}{\text { cost of basket at base prices }}$
4. Consumers Price Index $=\frac{\sum p_{1} q_{0}}{\sum P_{0} q_{0}} \times 100$
5. Laspeyre's Index $=\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}}$
6. Paasche's Index $=\frac{\sum p_{1} p_{1}}{\sum p_{0} q_{1}}$
7. Fishers Index $=\sqrt{\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} \mathrm{q}_{0}} \times \frac{\sum \mathrm{p}_{1} \mathrm{p}_{1}}{\sum \mathrm{p}_{0} \mathrm{q}_{1}}} \times 100$
8. Broad Money $=$ Narrow Money + Liquid Assets
9. Money Multiplies $=\frac{\mathrm{C}+\mathrm{I}}{\mathrm{C}+\mathrm{Y}} *$ When people hold some cash

Monetary \& Fiscal Policy
 Fiscal Policy
 Monetary Policy

1. High powered money = Fed Currency + Reserve + Govt. money (coin)
2. $M=$ money supply $=\mathrm{mH}$
3. Money created $=\frac{\text { new deposit }}{\text { reserve requirement }}$
4. Money multiplier $=\frac{1}{\text { reserve ratio }}=m$
5. money supply $(M) \times$ velocity $(V)=\operatorname{price}(P) \times$ real output $(Y)[M V=P Y]$
6. The Fisher effect:
$R_{\text {Nom }}=R_{\text {Real }}+E[I]$
For risky securities:
$R_{\text {Nom }}=R_{\text {Real }}+E[I]+R P$
7. Nominal = real +inflation
$(1+$ nominal $)=(1+$ real $)(1+$ inflation $)+$ risk premium
8. Neutral int. rate $=$ real tread rate of growth + infl. Target
9. Policy rate $=$ neutral $+\frac{1}{2}($ actual target $)$ growth $+\frac{1}{2}$ (actual - target $)$ inflation
10. Fiscal multiplier $=\frac{1}{1-\operatorname{MPC}(1-\mathrm{t})}$

International Trade and Capital Flows

International Trade

1. Terms of trade $=\frac{\text { price of exports }}{\text { price of imports }}$
2. The relation between the trade deficit, saving and domestic investment:
$X-M=$ private savings + government savings - investment.

Currency Exchange Rates
 Capital Flows and the FX Market
 Exchange Rate Calculations

1. Real exchange rate $(d / f)=$ nominal exchange rate $\times\left[\frac{C P I_{f o r e i g n ~}}{C \operatorname{CI}_{\text {domestic }}}\right]$
2. $R_{P / B}=S_{P / B}\left(P_{B} / P_{A}\right)$
3. New Exchange Rate = old exchange rate $\left(\frac{1+\operatorname{Inf} \mathrm{A}}{1+\operatorname{Inf} \mathrm{B}}\right)$
4. Cross Rate $=\frac{\text { MXN }}{\text { AUD }}=\frac{\text { MXN }}{\text { USD }} \times \frac{\text { USD }}{\text { AUD }}$
5. Interest Rate Parity (IRP) $=S_{A / B} \times\left(\frac{1+i A}{1+i B}\right)^{T}$
6. Marshall - Lerner condition:
$W_{X} \varepsilon_{X}+W_{M}\left(\varepsilon_{M}-1\right)>0$
7. The Absorption Approach:
$B T$ (Balance of Trade) $=\mathrm{V}$ (Income) $-E$ (Expense)

FRA

Introduction to Financial Statement Analysis

1. Balance Sheet - Financial position - at a point in time

Assets = liabilities + owners' equity.

Income Statement

Analyzing Income Statements

1. Revenues - Expenses $=$ Net Income
2. Net Income $=$ Revenues - Ordinary Expenses + Other Income - Other Expenses + Gains - Losses
3. Profit $=$ Cash receive during period $\times \frac{\text { Total Expected Profit }}{\text { Sales }}$
4. Straight line Depreciation:
$\frac{\text { Cost-residual value }}{\text { Useful Life }}$
5. Double Declining Depreciation:
$\frac{2}{\text { Useful life }}$ (Cost-accumulated Depreciation)[* salvage value not to be considered here]
6. Basic EPS $=\frac{\text { EAFESH }}{\text { wtd. Average of no.of shares }}$
7. Diluted $\mathrm{EPS}=\frac{[P A T-\text { pref.div }]+\text { conveitble prefeved div }+ \text { convertible in }(1-t)}{\text { Wtd.average no.of shares }+ \text { shares from conversion of convertible preference share debt }}$ + Shares from conversion of convertible preference shares from of options \mid wairants
8. Comprehensive Income $=$ Net Income (PAT) + Other Comprehensive Income [OCI]
9. Gross profit margin $=\frac{\text { GP }}{\text { Revence } / \text { sales }}$
10. Net profit margin $=\frac{\mathrm{NP}}{\text { sales }}$

Balance Sheets

Analyzing Balance Sheets

1. Balance Sheet - Financial position - at a point in time
Assets = liabilities + owners' equity.

Liquidity:

1. Current Ratio $=\frac{\text { Current Assets }}{\text { Current Liabilities }}$
2. Quick Ratio $=\frac{\text { CA-Inventing }}{\text { Current Liabilities }}$
3. Cash Ratio $=\frac{\text { cash }+ \text { marketable securities }}{\text { Current Liabilities }}$

Solvency:

4. Debt-to-Equity $=\frac{\text { Total Debt }}{\text { Total shareholders' equity }}$
5. Debt-to-Capital $=\frac{\text { total debt }}{\text { total debt }+ \text { total equity }+ \text { preference }}$
6. Debt-to-Assets $=\frac{\text { total Debt }}{\text { Total Assets }}$
7. Financial leverage $=\frac{\text { average Assets }}{\text { Average Equity }}=A / E$

Cash Flow Statements
 Analyzing Statements of Cash Flows I
 Analyzing Statements of Cash Flows II

1. FCFF = NI + Interest [1-tax] + Depreciation - Working Capital Investment - FC Investment
2. $\mathrm{FCFE}=\mathrm{CFO}-\mathrm{FC}$ Inv + Net Borrowing

Performance Ratio:

1. Cash flow to Revenue $=\frac{\mathrm{CFO}}{\text { net revenue }}$

Cash return on Asset $=\frac{\mathrm{CFO}}{\text { average total assets }}$
2. Cash return on Equity $=\frac{\text { CFO }}{\text { average total equity }}$
3. Cash to Income $=\frac{\mathrm{CFO}}{\text { operating income }}$
4. Cash flow per share $=\frac{\text { CFO-preferred div. }}{\text { wtd average of common share }}$

Coverage Ratio:

1. Debt coverage $=\frac{\mathrm{CFO}}{\text { total debt }}$
2. Interest coverage $=\frac{\text { CFO+int paid }+ \text { taxes paid }}{\text { int paid }}$
3. Reinvestment Ratio $=\frac{\mathrm{CFO}}{\text { cash paid for long-term assets }}$
4. Debt payment ratio $=\frac{\text { CFO }}{\text { cash long term debt repay }}$
5. Dividend payment $=\frac{\mathrm{CFO}}{\text { dividends paid }}$
6. Investing \& Financing $=\frac{\text { CFO }}{\text { Cash outflows from CFI }+\mathrm{CFF}}$

CFA L1 |Mind Map

Financial Analysis Techniques

1. Vertical common-size income statement ratios $=\frac{\text { Income statement accounts }}{\text { Sales }}$
2. Vertical common-size balance-sheet ratios $=\frac{\text { Balance sheet accounts }}{\text { Total assets }}$

Activity:

3. Receivable turnover $=\frac{\text { Annual sales } / \text { Credit sales }}{\text { Average receivables }}$
4. Days of sales outstanding $=\frac{365}{\text { Receivables Turnover }}$
5. Inventory Turnover $=\frac{\text { COGS }}{\text { average inventory }}$
6. Days $=\frac{365}{\text { inventory turnover }}$
7. Payables turnover $=\frac{\text { purchases }}{\text { average payables }}$
8. Days $=\frac{365}{\text { payables turnover }}$
9. Total Asset Turnover $=\frac{\text { Revenue }}{\text { average total assets }}$
10. Fixed Asset Turnover $=\frac{\text { Revenue }}{\text { average net fixed assets }}$
11. Working Capital Turnover $=\frac{\text { Revenue }}{\text { average working capital }}$

Profitability:

12. Net profit margin $=\frac{\text { Net income }}{\text { revenue } / \text { sales }}$

Net Income = Earnings after takes but before div.
Total Cap $=$ long - term + short term debt + common \& preferred equity $=$ Total Assets E+L $=A$
13. Gross profit Margin $=\frac{\mathrm{GP}}{\text { Revenue }}$
14. Operating profit Margin $=\frac{\text { Operating income }}{\text { Revenue }}$
15. Pretax Margin $=\frac{\text { EBT }}{\text { sales }}$
16. $R O A=\frac{\text { Net income }}{\text { average total asets }}$ or $\frac{\text { Net income }+ \text { intex }(1-t)}{\text { average total assets }}$
17. Operating return on total assets $=\frac{\text { EBIT }}{\text { average total assets }}$
18. $\operatorname{ROT} C=\frac{\text { EBIT }}{\text { Average total capital }}(E+D+P)$
19. $R O E=\frac{\text { Net Income }}{\text { Average total equity }}$
20. Return on common Equity $=\frac{\text { net income-preferred div. }}{\text { average common Equity }}=\frac{\text { EAFESH }}{\text { Equity }}$

Liquidity:
21. Current Ratio $=\frac{\text { Current Assets }}{\text { Current Liabilities }}$
22. Quick Ratio $=\frac{C A+\text { marketable securities+receivables }}{\text { Current Liabilities }}$
23. Cash Ratio $=\frac{\text { cash }+ \text { marketable securities }}{\text { Current Liabilities }}$
24. Defensive Interval $=\frac{\text { cash }+ \text { marketable securites }+ \text { receivables }}{\text { average daily expenditures }}$
25. Cash conversion cycle = Days sales outstanding + Days of inventory on hand - Days of payable

CFA L1 |Mind Map

Solvency:
26. Debt-to-Equity $=\frac{\text { Total Debt }}{\text { Total shareholders equity }}$
27. Debt-to-Capital $=\frac{\text { total debt }}{\text { total debt+total equity }}$
28. Debt-to-Assets $=\frac{\text { total Debt }}{\text { Total Assets }}$
29. Financial leverage $=\frac{\text { Average Assets }}{\text { Average Equity }}=A / E$
30. Interest coverage $=\frac{\text { Earning Before Interest \& Taxes }}{\text { interest payments }}$
31. Fixed charge coverage $=\frac{\text { EBIT }+ \text { lease payments }}{\text { interest }+ \text { lease payments }}$

DuPont System of Analysis:

1. $\mathrm{ROE}=\frac{\text { Net Income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Asset }} \times \frac{\text { Assets }}{\text { Equity }}$
2. ROE $=\frac{\text { PAT }}{\text { PBT }} \times \frac{\text { PBT }}{\text { EBIT }} \times \frac{\text { EBIT }}{\text { SALES }} \times \frac{\text { SALES }}{\text { ASSETS }} \times \frac{\mathrm{A}}{\mathrm{E}}$

Dividends:

3. $G=R R \times R O E$
4. Retention Rate $=1$ - Dividend Payout Ratio
5. Dividend Payout Ratio $=\frac{\text { Dividends }}{\text { Net income available to common shareholder }}$

Inventories

Analysis of Inventories

1. Cost of Goods Sold (COGS) = Beginning inventory + purchases - ending inventory
2. FIFO COGS = LIFO COGS - (ending LIFO reserve - beginning LIFO reserve)
3. Weighted Average Cost -

Cost per unit is calculated using this formula $=$
$\underline{\text { Total Cost of Goods Available for sale (Opening Inventory + Purchases) }}$
Total Quality Available for sale
4. Ending Inventory $=$ Beginning Inventory + Purchases - COGS

CFA L1 |Mind Map

Long Lived Assets
 Analysis of Long-Term Assets

1. SL Depreciation expense $=\frac{\text { Original Cost-Salvage value }}{\text { Depreciable life }}$
2. DDB depreciation in year $=\left(\frac{2}{\text { useful life }}\right)$ (Cost - Accumulated Depreciation)
3. Unit - of - production depreciation =
$\frac{\text { Original Cost-Salvage value }}{\text { Life in output units }} \times$ output units in the period
4. \quad Average Age $=\frac{\text { Accumulated Depreciation }}{\text { Annual Depreciation Expense }}$
5. Total Useful Life $=\frac{\text { Historical Cost }}{\text { Annual Depreciation Expense }}$
6. Remaining Useful Life $=\frac{\text { Ending Net PP\&E }}{\text { Annual Depreciation Expense }}$

Income Taxes
 Analysis of Income Taxes

1. Income tax Expense $=$ taxes payable $+\triangle \mathrm{DTL}-\triangle \mathrm{DTA}$
2. $D T A=$ Tax expense $<$ Tax payable
3. $D T L=$ Tax expense $<$ Tax payable
4. Interest Expense $=$ (the market rate at issue) \times (the balance sheet value of the liability at the beginning of the period)
5. Effective Tax Rate $=\frac{\text { Income Tax Expense }}{\text { Pretax Income }}$

CFA L1 |Mind Map

Non-Current Liabilities (Long Term)
Topics in Long-Term Liabilities and Equity

1. $C R=M R(A t$ par)
$C R>M R($ Premium $)$
$C R<M R($ Discount)
2. Ending Book value $=$ Beginning book value + Interest expense - coupon
3. Interest expense $=B V$ of bond at inception (issuance) \times market rate at the time of issuance
4. Balance Sheet Liability:

BV Ending $=$ BV Beginning + (Interest Expense - Coupon)
5. Interest Expense $=$ Market Rate at Issue \times Balance Sheet Value at Liability at beginning of the period.
6. Leverage Ratios:

- Debt/ Asset Ratio $=\frac{\text { Total Debt }}{\text { Total Assets }}$
- Debt/ Capital Ratio $=\frac{\text { Total Debt }}{\text { (Total Debt+Total Equity) }}$
- Debt to Equity Ratio $=\frac{\text { Total Debt }}{\text { Total Equity }}$
- Financial Leverage Ratio $=\frac{\text { Average Total Assets }}{\text { Average Total Equity }}$

7. Coverage Ratios:

- Interest Coverage $=\frac{\text { EBIT }}{\text { Interest Payments }}$
- Fixed Charge Coverage $=\frac{\text { EBIT+Lease payments }}{\text { Interest payments }+ \text { lease payments }}$
- Debt Coverage $=\frac{\text { CFO }}{\text { Total Debt }}$
- Reinvestment $=\frac{\text { CFO }}{\text { Cash paid for long-term assets }}$
- \quad Debt Payment $=\frac{\text { CFO }}{\text { Cash long-term debt repayment }}$
- \quad Dividend Payment $=\frac{\text { CFO }}{\text { Dividend Paid }}$
- Investing and Financing $=\frac{\text { CFO }}{\text { Cash outflows from Investing }}$

$$
\frac{\text { Cash outflows from Investing and Financing activities }}{\text { Cren }}
$$

Corporate Finance

Working Capital Management

1. Current Ratio $=\frac{\text { Current Asset }}{\text { Current Liabilities }}$
2. Quick Ratio OR Acid Test Ratio $=\frac{\text { Cash }+ \text { Short Term marketable Securities+receivables }}{\text { Current Liabilities }}$
3. Receivable Turnover $=\frac{\text { Credit Sales }}{\text { Avarage Receivables }}$
4. No of days of receivable $=\frac{365}{\text { Receivables turnover }}=\frac{\text { Average Recoverables }}{\text { Average Day's credit sales }}$
5. Inventory turnover $=\frac{\text { CoGS }}{\text { Average Inventory }}$
6. No of days of inventory $=\frac{365}{\text { inventory turnover }}-\frac{\text { Average Inventory }}{\text { Average day's of COGS }}$
7. Payables turnover ratio $=\frac{\text { Purchases }}{\text { Average trade payables }}$
8. No of days of payable $=\frac{365}{\text { payable turnover ratio }}=\frac{\text { Average payables }}{\text { Average Day's of purchases }}$
9. Operating cycle = days of inventory + days of receivables
10. Cash conversion cycle $=$ (Average days of receivables $)+$ (Average days of inventory) (Average days of payables)
11. Discount basis yield (Bank Disc yield) $=\left(\frac{\text { Face Value-Price }}{\text { Face Value }}\right) \times \frac{360}{\text { days }}$
12. Money Market Yield $=\left(\frac{\text { Face Value-Price }}{\text { Face Value }}\right) \times \frac{360}{\text { days }}=\mathrm{HPY} \times \frac{360}{\text { days }}$
13. Bond Equivalent Yield $=\left(\frac{\text { Face Value-Price }}{\text { Face Value }}\right) \times \frac{365}{\text { days }}=H P Y \times \frac{365}{\text { days }}$
14. Cost of trade credit $=\left(1+\frac{\% \text { discount }}{1-\% \text { discount }}\right)^{\frac{365}{\text { days past discount }}}-1$

Or, $\left(\frac{P_{1}}{P_{0}}\right)^{365 / n}-1$
(Day past discount = no of days after the end of discount period)

Equity Investments

Equity Valuation: Concepts and Basic Tools

1. Dividend discount model:
$\mathrm{V}_{0}=\sum_{t=1}^{\infty} \frac{D_{t}}{\left(1+k_{e}\right)^{t}}$
2. Preferred stock value $=\frac{\mathrm{D}_{\mathrm{P}}}{\left(1+\mathrm{K}_{\mathrm{P}}\right)^{1}}+\frac{\mathrm{D}_{\mathrm{P}}}{\left(1+\mathrm{K}_{\mathrm{P}}\right)^{2}}+\cdots \ldots+\frac{\mathrm{D}_{\mathrm{P}}}{\left(1+\mathrm{K}_{\mathrm{p}}\right)^{\alpha}}=\frac{\mathrm{D}_{\mathrm{P}}}{\mathrm{K}_{\mathrm{P}}}$
3. $\mathrm{FCFE}=$ Net Income + Depreciation - Increase in working Capital - Fixed Capital Investment debt principal repayments + new debt issues
4. $P_{0}=\frac{D_{1}+P_{1}}{1+K_{e}}$
5. $P_{0}=\frac{D_{1}}{\mathrm{~K}_{\mathrm{e}}-\mathrm{g}}=\frac{\text { Do }(1+\mathrm{g})}{\mathrm{K}_{\mathrm{e}}-\mathrm{g}}\left[\mathrm{K}_{\mathrm{e}}>\mathrm{g}\right]$
g = constant growth rate
Also, $\mathrm{K}_{\mathrm{e}}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{0}}+\mathrm{g}$
$\mathrm{K}_{\mathrm{e}}=$ investor required rate
6. Gordon growth model:
$\mathrm{V}_{0}=\frac{\mathrm{D}_{0}\left(1+g_{c}\right)}{1+\mathrm{K}_{\mathrm{e}}}+\frac{\mathrm{D}_{0}\left(1+g_{c}\right)^{2}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{2}}+\frac{\mathrm{D}_{0}\left(1+g_{c}\right)^{3}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{3}}+\cdots+\frac{\mathrm{D}_{0}\left(1+g_{c}\right)^{\infty}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{\infty}}$
7. $P_{0}=\frac{D_{1}}{1+K_{e}}+\frac{D_{2}}{\left(1+K_{e}\right)^{2}}+\frac{D_{3}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{3}}+\frac{\frac{\mathrm{D}_{4}}{\mathrm{~K}_{e}-\mathrm{g}}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{3}} ; \frac{\mathrm{D}_{4}}{\mathrm{~K}_{\mathrm{e}}-\mathrm{g}}=\mathrm{P}_{4}$
when the growth rate of dividend is constant:
$\mathrm{V}_{0}=\frac{\mathrm{D}_{0}\left(1+g_{c}\right)}{\mathrm{K}_{\mathrm{e}}-g_{c}}=\frac{\mathrm{D}_{1}}{\mathrm{~K}_{\mathrm{e}}-g_{c}}$
8. Multistage dividend discount model:

Value $=\frac{D_{1}}{1+\mathrm{K}_{\mathrm{e}}}+\frac{\mathrm{D}_{2}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{2}}+\cdots+\frac{\mathrm{D}_{\mathrm{n}}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{\mathrm{n}}}+\frac{\mathrm{P}_{\mathrm{n}}}{\left(1+\mathrm{K}_{\mathrm{e}}\right)^{\mathrm{n}}}$
Where , $P_{n}=\frac{D_{n+1}}{K_{e}-g}$
9. $\frac{\mathrm{P}_{0}}{\mathrm{E}_{1}}=$ leading /expected PE Ratio
$\frac{\mathrm{D}_{1} / \mathrm{E}_{1}}{\mathrm{~K}_{\mathrm{e}}-\mathrm{g}}$ [Dividend Payout Ratio $\left.=\mathrm{D}_{1} / \mathrm{E}_{1}\right]$
$\left[{ }^{P_{0}} / \mathrm{E}_{0}\right.$ - lagging / historical PE ratio]
10. Sustainable growth $=$ ROE \times (1-dividend payout ratio $)$
11. P/BV ratio (Price / book Value Ratio) $=\frac{\text { market value of equity }}{\text { book value of equity }}=\frac{\text { market price per share }}{\text { book value per share }}$

Book value of equity $=$ (total assets - total liabilities) - preferred stock
12. P/S Ratio (Price to Sale Ratio) $=\frac{\text { Market Value of Equity }}{\text { Total Sales }}$
13. Enterprise Value $=$ Market value of stocks + Market value of debt - Cash and short term investments.

Market Organization and Structure

1. Margin call price $=P_{0}\left(\frac{1-\text { Initial margin }}{1-\text { maintenance margin }}\right) P_{0}=$ Initial purchase price

Security Market Index

1. Return index: $\mathrm{R}_{\mathrm{P}}=\left[\left(1+\mathrm{R}_{\mathrm{S} 1}\right)\left(1+\mathrm{R}_{\mathrm{S} 2}\right)\left(1+\mathrm{R}_{\mathrm{S} 3}\right) \ldots . .\left(1+R_{S K}\right)\right]-1$
2. Price weighted Index $=\left[\frac{\sum \mathrm{P}_{1}}{\mathrm{n}}\right]$
3. Equal weighted Index $=\left[\frac{\left(\frac{P_{1}}{P_{0}}-1\right)}{n}\right]$
4. Market Capital weighted Index $=\left[\frac{\mathrm{P}_{1} \mathrm{Q}_{1}}{\sum \mathrm{P}_{0} \mathrm{Q}_{0}}-1\right]$
5. Current index value $=\frac{\text { current total market value of index stocks }}{\text { base year total market value of index stocks }} \times$ base year index value
6. Free float Adjusted Market Capital wtd Index $=\left[\frac{\sum \mathrm{P}_{1} \mathrm{Q}_{\mathrm{Q}} \mathrm{ff}}{\sum \mathrm{P}_{0} \mathrm{Q}_{0} \mathrm{ff}}-1\right]$

Overview of Equity Securities

1. $R O E=\frac{\mathrm{NI}_{\mathrm{t}}}{\left(\mathrm{BV}_{1}+\mathrm{BV}_{\mathrm{t}-1}\right) / 2}$

ROE $=\frac{\mathrm{NI}_{\mathrm{t}}}{B \mathrm{BV}_{\mathrm{t}-1} / 2}$
2. $D D M: R_{e}=\frac{\mathrm{D}_{1}}{\mathrm{P}_{\mathrm{o}}}+g$
3. \quad CAPM: $R_{F}+\left(R_{m}-R_{F}\right) \beta$
4. Market Price $\frac{\mathrm{C}_{1}}{(1+\mathrm{r})}+\frac{\mathrm{C}_{2}}{(1+\mathrm{r}) 2}+\ldots \ldots$.

Fixed Income

Fixed-Income Instrument Features
 Fixed-Income Cash Flows and Types

1. Conversion Ratio $=\frac{\text { Par Value of the Bond }}{\text { Conversion Price }}$
2. Conversion Value $=$ Conversion Ratio \times Current Market Price of a Common Share

Fixed-Income Bond Valuation: Prices and Yields
Yield and Yield Spread Measures for Fixed-Rate Bonds Yield and Yield Spread Measures for Floating-Rate Instruments The Term Structure of Interest Rates: Spot, Par, and Forward

1. Full price $=$ flat price + accrued interest
2. Cash price $=$ quoted price + accrued interes \dagger
3. Dirty price $=$ clean price + accrued interest
4. G-spread $=\mathrm{YTM}_{\text {Bond }}-\mathrm{Y} T \mathrm{M}_{\text {Treasury }}$
5. Option value $=\mathrm{Z}$-spread - OAS
6. An annual-coupon bond with N years maturity:

Price $=\frac{\text { Coupon }}{1+\text { YTM }^{2}}+\frac{\text { Coupon }}{(1+\mathrm{YTM})^{2}} \ldots \ldots \ldots \ldots \frac{(\text { Coupon }+ \text { principal })}{(1+\text { YTM })^{\mathrm{N}}}$
7. A semiannual-coupon bond with N years maturity:

Price $=\frac{\text { Coupon }}{1+\frac{Y T M}{2}}+\frac{\text { Coupon }}{\left(1+\frac{Y T M}{2}\right)^{2}}$ \qquad
8. No arbitrage price $=\frac{C F_{1}}{1+S_{1}}+\frac{C F_{2}}{\left(1+S_{2}\right)} \ldots \ldots \ldots \ldots \frac{(\text { CF }+ \text { principal })}{(1+S n)^{n}}$
9. Simple Yield $=\frac{\text { coupon } \pm \frac{\text { discount/premium }}{\text { Bond price }}}{\longrightarrow} \longrightarrow \begin{aligned} & \text { Does not matter quarterly } \\ & \text { or semi-annually }\end{aligned}$
10. Current Yield $=\frac{\text { anual coupon payment }}{\text { Bond price }}$
11. Option Value $=$ Zspread - OAS (Option Adjusted Spread)

Fixed-Income Securitization Asset-Backed Security (ABS) Instrument and Market Features Mortgage-Backed Security (MBS) Instrument and Market Features

1. Debt-to-service $=\frac{\text { NOI }}{\text { debt service }} ;$ where debt service $=$ principal + interes \dagger
2. Loan-to-value $=\frac{\text { current mortgage amount }}{\text { current appraised value }}$
3. Annualized Conditional prepayment rate $(C P R)=1-(1-S M M)^{12}$
4. Single month mortality $(S M M)=1-(1-C P R)^{1 / 12}$

Interest Rate Risk and Return
 Yield-Based Bond Duration Measures and Properties Yield-Based Bond Convexity and Portfolio Properties Curve-Based and Empirical Fixed-Income Risk Measures

1. Macaulay's Duration $=w t d$. Average of time, where $W=P V$ of $C F=\frac{\Sigma w x}{\Sigma w}$

Modified Duration $=\frac{\text { macaulay's duration }}{1+y t m / \mathrm{m}} \longrightarrow$ Compounding frequency
2. Modification Duration $\cap \cong$ E.D. [only for option free bonds]
3. Effective Duration (E.D.) $=\frac{P_{2}-P_{1}}{2 \Delta \mathrm{P}_{0}} ; \Delta \mathrm{Y}=$ change in YTM
4. Effective Convexity (E.C.) $=\frac{\mathrm{P}_{2}+\mathrm{P}_{1}-2 \mathrm{P}_{0}}{\mathrm{P}_{\mathrm{o}}(\Delta \mathrm{Y})^{2}}$
5. Convexity adjustment $=\frac{1}{2} \times \mathrm{EC} \times(\Delta \mathrm{Y})^{2}$
6. Money duration $=$ annual modification duration \times full price of bond position
7. Portfolio duration $=\Sigma w_{i} d_{i} ; W_{i}=$ market value rates
8. \quad Change in full bond price $=(-E . D . x \Delta Y)+\frac{1}{2} \times E c \times(\Delta Y)^{2}$
9. Duration gap = Macaulay's duration - investment horizon
10. Price Value of a Basis Point $(P V B P)=\frac{P_{2}-P_{1}}{2}$

Credit Risk
 Credit Analysis for Government Issuers Credit Analysis for Corporate Issuers

1. Expected loss $=$ exposure \times prob of default (default risk) \times loss severity (1-RR)
2. Credit risk $=$ default risk + loss severity (1-RR)
3. Yield Spread $=$ YTM $_{\text {Credit risky bond }}-$ YTM $_{\text {risk free bond }} \mathrm{Or}$,

Yield spread $=$ liquidity premium + credit spread (will widen) affected by 2 factors:

- credit wordiness \downarrow (credit migration / downgrade risk)
- Market liquidity risk.

4. Enterprise Value $=$ Equity + Debt - Cash and Marketable Securities
5. Leverage Ratios:

- Debt/Capital
- Debt/EBITDA
- FFO/Deb \dagger
- FCF after dividends/Debt

6. Coverage Ratios:

- EBITDA/ Interest Expense
- EBIT/Interest Expense

Derivatives

Derivative Instruments and Derivative Markets

1. Risk free Asset $=$ Risky Asset + Derivatives

Forward $=$ Spot + Storage + Int - Benefit
\rightarrow Spot $(1+R f)^{t}$ FV (storage - benefit)
$\rightarrow\{s+$ PV (storage - benefit) (1+Rf)
2. $I M=\mu+3 \sigma$

$$
V_{\text {swap }}=V_{\text {Floating rate bond }}-V_{\text {Fixed rate bond }}
$$

Forward Commitment and Contingent Claim Features and Instruments

1. Forward Price $=$ Spot + Interest Cost + Storage Cost -Benefits.

$$
=\operatorname{Spot}\left(1+R_{F}\right)^{\mathrm{T}}+\mathrm{FV}(\text { Storage }- \text { Benefit })
$$

2. The forward price of an asset to be delivered at time T is:
$\mathrm{F}_{0}(\mathrm{~T})=\mathrm{S}_{0}(1+\mathrm{Rf})^{\mathrm{T}}$
3. The value of a forward contract is zero at initiation:
$V_{\dagger}(T)=S_{t}-F_{0}(T) /\left(1+R_{f}\right)^{T-\dagger}$
4. Payoff to FRA $=\frac{(\text { market rate-contracted rate }) \times \operatorname{NP} \times \frac{\mathrm{n}}{12}}{1+\left(\text { market rate } \times \frac{n}{12}\right)} * \frac{\mathrm{n}}{360}$ if no. of days
5. $U=$ up factor
$D=\frac{1}{U}$
Probability risk neutral $=\lambda \mathrm{U}=\frac{(1+\mathrm{Rf})^{\mathrm{T}}-\mathrm{D}}{\mathrm{U}-\mathrm{D}}$
$\lambda D=1-\lambda U$
Call option value $=\left(\lambda u \times C_{1}^{+}\right)+\left(\lambda D \times C_{1}^{-}\right)$
\therefore Today value $=(c o)=\frac{\text { call option value }}{(1+\mathrm{Rf})}$
6. Option premium $=$ intrinsic value + time value
7. Put call parity $=C_{o}+\frac{X}{(1+R F)^{T}}=P_{o}+S_{o}$
8. Put call forward parity $=\mathrm{C}_{\mathrm{o}}+\frac{\mathrm{X}}{(1+\mathrm{RF})^{\mathrm{T}}}=\mathrm{P}_{\mathrm{o}}+\frac{\mathrm{F}}{(1+\mathrm{RF})^{\mathrm{T}}}$

$$
\rightarrow \mathrm{C}_{\mathrm{o}}-\mathrm{P}_{\mathrm{o}}=\frac{\mathrm{F}-\mathrm{X}}{(1+\mathrm{RF})^{\mathrm{T}}}
$$

Introduction to Alternative Investments

1. Future Price $=$ Spot Price $\times \sqrt{(1+\text { risk free rate })+\text { Storage Costs }}$ - convenience yield
2. Contango $=$ Cost of Carry $>$ Benefit

Backwardation $=$ Cost of Carry $<$ Benefit
3. Sortino Ratio $=\frac{R_{P}-R_{M A R}}{\sqrt{\text { MSD }}} \longrightarrow$ Mean acceptable return
4. Value of Real Estate

Income Based Approach:
a) $\frac{\text { Net Operating Income (NOI) }}{\text { Cap Rate }} \quad$ Cap Rate $=R_{e}-g \rightarrow$ estimated growth rate
5. Value of REIT - Income Based

Net Income
+Depreciation
-Gains from sold property
+Sales from property sold

Portfolio

Portfolio management: An Overview

1. Diversification Ratio $=\frac{\text { Risk of equally weighted portfolio of ' } n \text { ' securities }}{\text { Risk of single security at random from ' } n \text { ' securities }}$

Portfolio Risk and Return: Part I

1. Holding period return $=\frac{\text { end of period value }}{\text { beginning of period value }}-1$
2. Arithmetic mean return $=\frac{\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\cdots+\mathrm{R}_{\mathrm{n}}\right)}{\mathrm{n}}$
3. Geometric mean return $=\sqrt[n]{\left(1+R_{1}\right) \times\left(1+R_{2}\right) \times\left(1+R_{3}\right) \ldots \times\left(1+R_{n}\right)}-1$
4. Population variance: $\sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n}$
5. Sample variance: $\sigma^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$
6. $\operatorname{Cov}=\sum\left(\mathrm{X}-E_{x}\right)\left(\mathrm{Y}-E_{y}\right) \times \mathrm{P}$
7. $\quad R_{p}=\sum W_{i} R_{i}$ and $E_{R_{p}}=\sum W_{i} E_{R_{i}}$
8. $\operatorname{Cov}_{1,2}=\frac{\sum\left(\mathrm{R}_{\mathrm{t}, 1}-\overline{\mathrm{R}}_{1}\right)\left(\mathrm{R}_{\mathrm{t}, 2}-\overline{\mathrm{R}}_{2}\right)}{\mathrm{n}-1}=\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})(\mathrm{y}-\overline{\mathrm{y}})}{\mathrm{n}-1}$
9. $\rho_{x, y}=\frac{\operatorname{Cov}(\mathrm{x}, \mathrm{y})}{\sigma_{\mathrm{x}} \sigma_{\mathrm{y}}}$
10. $\sigma_{P}=\sqrt{\sigma_{P}^{2}}=\sqrt{\sum \mathrm{w}^{2} \sigma^{2} \sum \mathrm{w}_{\mathrm{i}} \mathrm{w}_{\mathrm{j}} \operatorname{Cov}_{\mathrm{i}, \mathrm{j}}}$
$\sigma_{\mathrm{P}}=\sqrt{\mathrm{w}_{1}^{2} \sigma_{1}^{2}+\mathrm{w}_{2}^{2} \sigma_{2}^{2}+2 \mathrm{w}_{1} \mathrm{w}_{2} \sigma_{1} \sigma_{2} \mathrm{r}_{1,2}}$
$\sigma_{\mathrm{P}}=\sqrt{\mathrm{w}_{1}^{2} \sigma_{1}^{2}+\mathrm{w}_{2}^{2} \sigma_{2}^{2}+2 \mathrm{w}_{1} \mathrm{w}_{2} \operatorname{Cov}_{1,2}}$
$\sigma_{\mathrm{P}}=\sqrt{\mathrm{w}_{1}^{2} \sigma_{1}^{2}+\mathrm{w}_{2}^{2} \sigma_{2}^{2}+\mathrm{w}_{3}^{2} \sigma_{3}^{2}+2 \mathrm{w}_{1} \mathrm{w}_{2} \operatorname{Cov}_{1,2}+2 \mathrm{w}_{2} \mathrm{w}_{3} \operatorname{Cov}_{2,3}+2 \mathrm{w}_{1} \mathrm{w}_{3} \operatorname{Cov}_{1,3}}$
11. P/L from securities - Commission and other Brokerage Expenses

Gross Return - Management and Administration Fees
Net Return
12. After tax return $=$ Pre-tax return (1-t)
13. Leveraged Return $=\frac{\frac{\text { gain }}{\text { loss }} \text { on Total Investment }}{\text { Investor's Cash Investment }}$
14. Investor's Utility Function:

1. $E\left(R_{P}\right)=\left(1-w_{m}\right) R_{f}+w_{m} R_{m}$
$=\mathrm{R}_{\mathrm{f}}+\mathrm{w}_{\mathrm{m}}\left(\mathrm{R}_{\mathrm{m}}-\mathrm{R}_{\mathrm{f}}\right)$
$\sigma_{\mathrm{P}}=\sqrt{\left(1-\mathrm{w}_{\mathrm{m}}\right)^{2} \sigma \mathrm{R}_{\mathrm{f}}^{2}+\mathrm{w}_{\mathrm{m}}^{2} \sigma_{\mathrm{m}}^{2}+2\left(1-\mathrm{w}_{\mathrm{m}}\right) \sigma_{\mathrm{Rf}} \sigma_{\mathrm{Rm}} \mathrm{r}_{\mathrm{Rf}}, \mathrm{R}_{\mathrm{m}}}$
For $\mathrm{R}_{\mathrm{f}}, \sigma=0$ and $\operatorname{Cov}=0$
$\therefore \sigma_{\mathrm{P}}=\sqrt{\mathrm{w}_{\mathrm{m}}^{2} \sigma_{\mathrm{m}}^{2}}=\sigma_{\mathrm{m}} \mathrm{W}_{\mathrm{m}}$
$\therefore \mathrm{W}_{\mathrm{m}}=\frac{\sigma_{\mathrm{p}}}{\sigma_{\mathrm{m}}}$
2. Capital market line:
$E\left(R_{P}\right)=R_{f}+\sigma_{P}\left[\frac{R_{m}-R_{f}}{\sigma_{\mathrm{m}}}\right]$
3. $E\left(R_{i}\right)=R_{f}+\frac{E\left(R_{m}\right)-R_{f}}{\sigma_{m}^{2}} \times \operatorname{Cov}_{i, m}$

Or $E\left(R_{i}\right)=R_{f}+\frac{\operatorname{Cov}_{i, m}}{\sigma_{\mathrm{m}}^{2}}\left[E\left(R_{m}\right)-R_{t}\right]$
4. $\quad \beta=\frac{\operatorname{Cov}_{i, m}}{\sigma_{\mathrm{m}}^{2}}=\mathrm{r} \frac{\sigma_{\mathrm{i}}}{\sigma_{\mathrm{m}}}$
5. Market Model:
$\mathrm{R}_{\mathrm{i}}=\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \mathrm{R}_{\mathrm{m}}+\varepsilon_{\mathrm{i}}$
6. Total risk = systematic risk + unsystematic risk
7. Single factor model:
$\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)-\mathrm{R}_{\mathrm{f}}=\beta_{i} \times\left[E\left(\mathrm{R}_{\mathrm{m}}\right)-\mathrm{R}_{\mathrm{f}}\right]$
8. Risk free portfolio: $\mathrm{W}_{\mathrm{A}}=\frac{\sigma_{B}}{\sigma_{A}+\sigma_{B}}$
9. Security Market Line:
$R_{e}=R_{f}+\frac{\operatorname{Cov}_{i, m k t}}{\sigma_{\text {mkt }}^{2}}\left(R_{m}-R_{f}\right)$
10. \quad M-Squared $=\left(R_{p}-R_{f}\right) \frac{\sigma_{m}}{\sigma_{p}}-\left(R_{m}-R_{f}\right)$
11. Sharpe Ratio $=\frac{\mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{f}}}{\sigma_{\mathrm{p}}}$
12. Treynor measure $=\frac{\mathrm{R}_{\mathrm{p}}-\mathrm{R}_{\mathrm{f}}}{\beta_{P}}$
13. Jensen's Alpha $=\mathrm{R}_{\mathrm{p}}-\mathrm{CAPM}$

