Quants

- 1. Nominal risk-free rate = Real risk-free rate + Expected inflation rate.
- 2. Additive Model: Nominal Rate = Inflation Premium + Real Rate
- 3. Multiplicative Model: (1 + Nominal Rate) = (1 + Inflation Rate) (1 + Real Rate)
- Required interest rate = Nominal risk-free rate+ default risk premium + liquidity premium +maturity risk premium.
- 5. Effective Annual Rate (EAR) = (1+ periodic rate)^m -1

periodic rate = stated annual rate/m

m = no. of compounding periods per year

6. For continuous compounding, EAR = $e^{rt} - 1$

7. Single Cash Flow:
$$PV = \frac{FV}{(1+r)^n}$$
 or $FV = PV (1 + r)^n$

8. FV = PV
$$(1 + I/V)^N$$

9.
$$PV_{perpetuity} = \frac{PMT}{I/y}$$

Discounted Cash Flow Applications

- 1. NPV = PV(inflows) PV(outflows)
- 2. Holding Period Return(HPR) = $\frac{\text{Ending value-Beginning value}}{\text{Beginning value}} \text{ Or } \frac{P_1 P_0 + D}{P_0}$
- 3. Money Weighted Rate of Return (MWROR) = IRR (depends on magnitude and timing)
- 4. Time Weighted Rate of Return (TWROR)
 - = $[(1 + r_1)(1 + r_2)....(1 + r_n)]^{1/n} 1$

Where, $(1 + r_1) = HPR$

- 5. Bank Discount Yield (BDY)= $\frac{F-P}{F} \times \frac{360}{n}$
- 6. Holding Period Yield (HPY) = $\frac{F-P}{P} \times 100$ Or $\frac{P_1 P_0 + D_1}{P_0} = \frac{P_1 + D_1}{P_0} 1$
- 7. Effective Annual Yield (EAY)= $(1 + HPY)^{\frac{365}{n}}$ -1
- 8. (Annualized HPY & annual compounding)

: HPY = $(EAY + 1)^{n/365} - 1$

- 9. Money Market Yield (MMY)= HPY X $\frac{360}{n}$ [Annual HPY in multiplicative fashion]
- 10. Bond Equivalent Yield (BEY) = 2 x semiannual discount rate (per annum compounded semiannually) = $\left[(1 + EAY)^{\frac{1}{2}} 1\right] \times 2$

Organizing, Visualizing, and Describing Data Statistical Measures of Asset Returns

- 1. Population mean (μ) = $\frac{\sum_{i=1}^{N} X_i}{N}$; where N is population size Sample mean (\overline{X}) = $\frac{\sum_{i=1}^{N} X_i}{n}$; when n is sample size
- 2. Sum of mean deviations = $\sum_{i=1}^{N} (x_i \overline{x}) = 0$

3. Geometric mean (GM) =
$$\sqrt[n]{(x_1 * x_2 \dots x_n)}$$

Geometric mean return (R_g): 1 + R_g = $\sqrt[n]{(1 + R_1) (1 + R_2) (1 + R_n)}$

 $AM \geq GM$ [AM - GM increase as the dispersion of the observations increase.]

AM = GM [When all observations are equal]

4. Harmonic mean (HM) = $\frac{N}{\sum_{i=1}^{N} \frac{1}{x_i}}$ (average cost of shares purchase over time)

AM > GM > HM (dollar cost averaging uses investing same amount every time period in a share; average price will be lowest as HM is < AM or GM)

- 5. Ly = (n+1) $\frac{y}{100}$ [Quartiles, Deciles and Percentiles]
- 6. Range = Maximum Value Minimum Value

7. Mean Absolute Deviation (MAD) =
$$\frac{\sum_{i=1}^{N} |xi-\bar{x}|}{N} = \frac{\sum |x-\bar{x}|}{N}$$

8. Population variance, $\sigma^2 = \frac{\sum_{i=1}^{N} (x-\mu)^2}{N}$

9. Population Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum_{i=1}^{N} (x-\mu)^{2}}{N}}$

 $\sigma > MAD$

10. S² =
$$\frac{\sum_{i=1}^{N} (x-\bar{x})^2}{N-1}$$

11. K =
$$\frac{\sum_{i=1}^{N} \mathbf{x} - \mu}{\sigma}$$

Standardizing a variable converts the mean into 0 and Standard Deviation into 1

12. Chebyshev's inequality / Bienaymé Chebyshev's Theorem

% of observations that lie within K standard deviation of mean is at least= $1 - \frac{1}{K^2}$ i.e., min Probability that variable will lie between $\mu \pm K\sigma = 1 - \frac{1}{K^2}$ (Applicable for all distribution) (K > 1)

- 13. Coefficient of variation (CV) = $\frac{\sigma}{\mu}$ x 100 OR ($\frac{S_x}{\bar{x}}$ x 100)
- 14. Sharpe ratio (Reward to variability ratio/SR) = $\frac{\overline{R}_p R_f}{\sigma_p}$
- 15. Symmetrical: Mean = Median = Mode

Positive skewness: Mean > Median > Mode

Probability Concepts Probability Trees and Conditional Expectations Portfolio Mathematics

- 1. **Probability** = $\frac{\text{no of favourable outcomes}}{\text{total possible outcomes}}$
- 2. $P(A) \Rightarrow$ Marginal / Unconditional Probability
 - $P(A \cap B) \Rightarrow$ Joint Probability A and B
 - $P(A \cup B) \Rightarrow$ Total Probability A or B
 - $P(B \mid A) \Rightarrow$ Conditional Probability of B given that A has occurred
- 3. $P(A | B) = \frac{P(A \cap B)}{P(B)}$

Or $P(A \cap B) = P(A \mid B)$. P(B)

(Multiplication rule of probability)

4. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(Addition rule)

5. For, mutually exclusive event, $P(A \cap B) = 0$

For, independent event, $P(A \cap B) = P(A) P(B)$

Also, P(A | B) = P(A) or P(B | A) = P(B)

6. $P(R) = P(R | S_1) \times P(S_1) + P(R | S_2) \times P(S_2) + P(R | S_n) \times P(S_n)$

Where $\{S_1\,,S_2\,\ldots,S_n\}$ is mutually exclusive & exhaustive [total probability rule]

7. BAYES' THEOREM - Posterior Probability

Common Probability Distribution Appendices

Simulation Methods

- 1. Expected value E(x) = Weighted average of all possible outcomes $\sum PX$
- 2. $\sigma^2 = \sum P. (X \overline{X})^2$
- 3. Cov $(R_A, R_B) = \sum P(S) \times [R_A E(R_A)][R_B E(R_B)]$
- 4. Correlation $(R_i, R_j) = \frac{Cov(R_i, R_j)}{\sigma_{R_i^*}\sigma_{R_i}}$
- 5. Weight (W_i) = $\frac{MV \text{ of investment in Asseet}}{MV \text{ of the portfolio}}$
- 6. Expected value of portfolio composed of n asset : $E(R_P) = W_1E(R_1) + W_2E(R_2) + \dots + W_nE(R_n)$
- 7. Var (R_p) for a two-asset portfolio = $W_A \sigma_{R_B}^2 + W_B \sigma_{R_B}^2 + 2W_A W_B \operatorname{cov} (R_A R_B)$ Variance of n asset portfolio will have n(n-1)/2

Unique cov (R_A, R_B) as cov $(R_A, R_B) = cov (R_B, R_A)$

- 8. Var (R_P) for a 3 asset portfolio = $W_A^2 \sigma_{R_A}^2 + W_B^2 \sigma_{R_B}^2 + W_C^2 \sigma_{R_C}^2 + 2 [W_A W_B \operatorname{cov}(R_A R_B) + W_A W_C \operatorname{cov}(R_A R_C) + W_B W_C \operatorname{cov}(R_B R_C)]$ Cov (R_AR_A) = Variance R_A or $\sigma_{R_A}^2$
- 9. Probability of function P(x) = P (X=x) (for discrete variables)

$$\Rightarrow$$
 0 \leq p (x) \leq 1

$$\Rightarrow$$
 Σ P (x) = 1

- 10. Cumulative distribution function CDF F (x) = P (X \leq x)
- 11. Bernoulli trials: $P(x) = n_{C_x} p^x (1-p)^{n-x}$
- 12. In Binominal Distribution,

```
Df, P < 0.5 + ve Skewness
```

- P = 0.5 Symmetrical
- P >0.5 -ve Skewness

Expected value of a Binominal Random Variable $\Rightarrow E(X) = np$

Variance of a Binominal Random Variable \Rightarrow Variance of X = np(1-p)

Effective annual rate $\Rightarrow e^{R_{cc}}$

 $\ln \left(\frac{S_1}{S_0}\right)$ = ln (1+HPR) = R_{cc} (rate of continuous compounding)

13. $Z = \frac{\text{observation-population mean}}{\text{S.D.}} = \frac{\bar{x} - \mu}{\sigma}$

90% confidence internal, \bar{x} - 1.65s to \bar{x} + 1.65s

95% confidence internal, \overline{x} - 1.96s to \overline{x} + 1.96s

99% confidence internal, \overline{x} - 2.58s to $\ \overline{x}$ + 2.58s

14. Roy's Safety-First Ratio (SFR) = $\frac{E(R_P)-R_{min}}{\sigma_P}$ (higher the better)

R_{min}= threshold level

If threshold level = Risk free rate of return, i.e. $R_{min} = R_f$, SFR = Sharpe's Ratio

Sampling and Estimation Estimation and Inference

- 1. Sample error of the mean = Sample mean Population mean
 - $= \overline{x} \mu$
- 2. Standard error of sample mean ($\sigma_{\bar{x}})$
 - = $\frac{\sigma}{\sqrt{n}}$ (If σ is known)
 - = $\frac{s}{\sqrt{n}}$ (If σ is not known)
- 3. Confidence Interval: $\bar{x} \pm Z\alpha_{/2} \frac{\sigma}{\sqrt{n}}$

 α - Level of significance (for 3 distribution)

4. Confidence Interval: $\bar{x} \pm t \alpha_{/2} \frac{s}{\sqrt{n}} [\sigma \text{ not known}]$

t is calculated as df(n-1) $\rightarrow \frac{\alpha}{2}$

Basics of Hypothesis Testing Hypothesis Testing Parametric and Non-Parametric Tests of Independence

1. Equality of mean (independent samples)

t statistic of
$$\overline{x}_1-\overline{x}_2$$
 = $\frac{(\overline{X}_1-\overline{X}_2)-(\mu_1-\mu_2)}{\sigma_{X_1}-X_2}$

Where,
$$\sigma_{x_1-x_2} = \sqrt{\frac{S_{P^2}}{n_1} + \frac{S_{P^2}}{n_2}}$$

$$S_{p^2}^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$

2. Equality of mean: Dependent Samples

$$\dagger = \frac{\overline{d} - \mu}{s_{\overline{d}}}$$

Where, \overline{d} = Mean of differences between the samples; $S_{\overline{d}}=\frac{Standard\ deviation\ of\ the\ differences}{\sqrt{n}}$

3. Testing of variance (Chi square statistic):

X² Statistic =
$$\frac{(n-1)S^2}{\sigma^2}$$

Where, S² = Sample variance

 σ^2 = Hypothesized value for sample variance.

4. Testing of equality of variance (F distribution) F statistic = $\frac{S_1^2}{S_2^2}$

Economics

The Firm & Market Structures

1. Perfect Competition \rightarrow Firm faces infinitely elastic demand

MR = AR = P = D

(Price is determined by the market supply and demand.)

2. MR =
$$P(1 - \frac{1}{E_n})$$

- 3. HHI = Σ (market share)²
- 4. $N_{firm} = \sum (market share)$

- 1. GDP Deflator = $\frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100$
- 2. Per capita Real GDP = $\frac{\text{Real GDP}}{\text{Population}}$
- 3. GDP:

Under Expenditure Approach

C+I+G+(X-M)

Under Income Approach

NI + Depn (CCA) + Statistical Discrepancy or C+S+T

4. National Income

Compensation of Employees (Wages/COE) + Interest Income + Rent + Corporate & Govt.

Enterprise Profit before Taxes+ Unincorporated Business Net Income + Indirect Business

Taxes - Subsidies

5. Personal Income

National Income + Transfer payment to household

- Taxes (Indirect Business & Corporate)
- Undistributed corporate profits
- 6. Potential GDP = aggregate working hours x labor paid

Growth in potential GDP = growth in labor force + growth in labor productivity

 $\begin{array}{cccc} S &= I \\ (Savings) & (Investment) \end{array} + \begin{array}{ccc} (G-T) & (X-M) \\ + & (Fiscal + & (Trade \\ balance) & balance) \end{array}$

- 7. Personal Disposable Income = Personal Income Personal Taxes.
- 8. Sustainability of Economic Growth:

Potential GDP = aggregate hours worked x labor productivity

Growth in Potential GDP = growth in labor force + growth in labor productivity.

9. Production Function:

Total $Y = A \times f(L, K)$

10. Production per worker basis:

$$Y/L = A \times f\left(\frac{k}{L}\right)$$

- 1. High powered money = Fed Currency + Reserve + Govt. money (coin)
- 2. M = money supply = mH
- 3. Money created = $\frac{\text{new deposit}}{\text{reserve requirement}}$
- 4. Money multiplier = $\frac{1}{\text{reserve ratio}}$ = m
- 5. money supply(M) x velocity(V) = price(P) x real output(Y) [MV = PY]
- 6. The Fisher effect:

```
R_{Nom} = R_{Real} + E[I]
```

For risky securities:

```
R_{Nom} = R_{Real} + E[I] + RP
```

- 7. Nominal = real + inflation
 - (1+nominal) = (1+ real) (1+ inflation) + risk premium
- 8. Neutral int. rate = real tread rate of growth + infl. Target
- 9. Policy rate = neutral + $\frac{1}{2}$ (actual target) growth + $\frac{1}{2}$ (actual target) inflation
- 10. Fiscal multiplier = $\frac{1}{1-MPC(1-t)}$

Currency Exchange Rates Capital Flows and the FX Market Exchange Rate Calculations

1. Real exchange rate (d/f) = nominal exchange rate $x \left[\frac{CPI_{foreign}}{CPI_{domestic}} \right]$

2.
$$R_{P/B} = S_{P/B} (P_B/P_A)$$

- 3. New Exchange Rate = old exchange rate $\left(\frac{1+\ln fA}{1+\ln fB}\right)$
- 4. Cross Rate = $\frac{MXN}{AUD} = \frac{MXN}{USD} \times \frac{USD}{AUD}$

5. Interest Rate Parity (IRP) =
$$S_{A/B} \times \left(\frac{1+iA}{1+iB}\right)^{T}$$

6. Marshall - Lerner condition:

 $W_X \varepsilon_X + W_M (\varepsilon_M - 1) > 0$

7. The Absorption Approach:

BT (Balance of Trade) = Y (Income) - E (Expense)

FRA

1. Balance Sheet - Financial position - at a point in time

Assets = liabilities + owners' equity.

Income Statement Analyzing Income Statements

- 1. Revenues Expenses = Net Income
- 2. Net Income = Revenues Ordinary Expenses + Other Income Other Expenses + Gains Losses
- 3. Profit = Cash receive during period x $\frac{\text{Total Expected Profit}}{\text{Sales}}$
- 4. Straight line Depreciation:

Cost–residual value Useful Life

5. Double Declining Depreciation:

 $\frac{2}{\text{Usefullife}}$ (Cost - accumulated Depreciation)[* salvage value not to be considered here]

- 6. Basic EPS = $\frac{\text{EAFESH}}{\text{wtd. Average of no.of shares}}$
- 7. Diluted EPS = $\frac{[PAT-pref.div]+conveitble prefeved div+convertible in(1-t)}{Wtd.average no.of shares + shares from conversion of convertible preference share debt + Shares from conversion of convertible preference shares from of options | wairants$
- 8. Comprehensive Income = Net Income (PAT) + Other Comprehensive Income [OCI]
- 9. Gross profit margin = $\frac{GP}{Revence/sales}$
- 10. Net profit margin = $\frac{NP}{sales}$

Cash Flow Statements Analyzing Statements of Cash Flows I Analyzing Statements of Cash Flows II

- 1. FCFF = NI + Interest [1-tax] + Depreciation Working Capital Investment FC Investment
- 2. FCFE = CFO FC Inv + Net Borrowing

Performance Ratio:


```
Solvency:

26. Debt-to-Equity = \frac{\text{Total Debt}}{\text{Total shareholders equity}}

27. Debt-to-Capital = \frac{\text{total debt}}{\text{total debt+total equity}}

28. Debt-to-Assets = \frac{\text{total Debt}}{\text{Total Assets}}

29. Financial leverage = \frac{\text{Average Assets}}{\text{Average Equity}} = A/E

30. Interest coverage = \frac{\text{Earning Before Interest & Taxes}}{\text{interest payments}}

31. Fixed charge coverage = \frac{\text{EBIT+lease payments}}{\text{interest +lease payments}}

DuPont System of Analysis:

1. ROE = \frac{\text{Net Income}}{\text{Sales}} \times \frac{\text{Sales}}{\text{Asset}} \times \frac{\text{Assets}}{\text{Equity}}

2. ROE = \frac{\text{PAT}}{\text{PBT}} \times \frac{\text{PBT}}{\text{EBIT}} \times \frac{\text{EBIT}}{\text{SALES}} \times \frac{\text{SALES}}{\text{ASSETS}} \times \frac{\text{A}}{\text{E}}

Dividends:

3. G = \text{RR} \times \text{ROE}

4. Retention Rate = 1 - Dividend Payout Ratio
```

5. Dividend Payout Ratio = Dividends Net income available to common shareholder

Inventories Analysis of Inventories

- 1. Cost of Goods Sold (COGS) = Beginning inventory + purchases ending inventory
- 2. FIFO COGS = LIFO COGS (ending LIFO reserve beginning LIFO reserve)
- 3. Weighted Average Cost -

Cost per unit is calculated using this formula =

Total Cost of Goods Available for sale (Opening Inventory + Purchases) Total Quality Available for sale

4. Ending Inventory = Beginning Inventory + Purchases - COGS

Income Taxes Analysis of Income Taxes

- 1. Income tax Expense = taxes payable + $\Delta DTL \Delta DTA$
- 2. DTA = Tax expense < Tax payable
- 3. DTL = Tax expense < Tax payable
- Interest Expense = (the market rate at issue) x (the balance sheet value of the liability at the beginning of the period)
- 5. Effective Tax Rate = $\frac{\text{Income Tax Expense}}{\text{Pretax Income}}$

Corporate Finance

Equity Investments

Equity Valuation: Concepts and Basic Tools

1. Dividend discount model:

$$\mathbf{V}_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+k_e)^2}$$

- 2. Preferred stock value = $\frac{D_P}{(1+K_P)^1} + \frac{D_P}{(1+K_P)^2} + \dots + \frac{D_P}{(1+K_P)^{\alpha}} = \frac{D_P}{K_P}$
- 3. FCFE = Net Income + Depreciation Increase in working Capital Fixed Capital Investment debt principal repayments + new debt issues

4.
$$P_0 = \frac{D_1 + P_1}{1 + K_e}$$

5.
$$P_0 = \frac{D_1}{K_e - g} = \frac{D_0 (1+g)}{K_e - g} [K_e > g]$$

g = constant growth rate

Also, $K_e = \frac{D_1}{P_0} + g$

K_e = investor required rate

6. Gordon growth model:

$$V_{0} = \frac{D_{0}(1+g_{c})}{1+K_{e}} + \frac{D_{0}(1+g_{c})^{2}}{(1+K_{e})^{2}} + \frac{D_{0}(1+g_{c})^{3}}{(1+K_{e})^{3}} + \dots + \frac{D_{0}(1+g_{c})^{\infty}}{(1+K_{e})^{\infty}}$$

7.
$$P_0 = \frac{D_1}{1+K_e} + \frac{D_2}{(1+K_e)^2} + \frac{D_3}{(1+K_e)^3} + \frac{\frac{D_4}{K_e-g}}{(1+K_e)^3}; \frac{D_4}{K_e-g} = P_4$$

when the growth rate of dividend is constant:

$$V_0 = \frac{D_0(1+g_c)}{K_e - g_c} = \frac{D_1}{K_e - g_c}$$

8. Multistage dividend discount model:

Value =
$$\frac{D_1}{1+K_e} + \frac{D_2}{(1+K_e)^2} + \dots + \frac{D_n}{(1+K_e)^n} + \frac{P_n}{(1+K_e)^n}$$

Where , $P_n = \frac{D_{n+1}}{K_e - g}$

9. $\frac{P_0}{E_1}$ = leading /expected PE Ratio

 $\frac{D_1/E_1}{K_e-g}$ [Dividend Payout Ratio =D $_1/E_1$]

 $\left[\frac{P_0}{E_0} - \text{lagging} / \text{historical PE ratio}\right]$

10. Sustainable growth = ROE x (1 - dividend payout ratio)

11. P/BV ratio (Price / book Value Ratio) = $\frac{\text{market value of equity}}{\text{book value of equity}} = \frac{\text{market price per share}}{\text{book value per share}}$

Book value of equity = (total assets - total liabilities) - preferred stock

- 12. P/S Ratio (Price to Sale Ratio) = $\frac{\text{Market Value of Equity}}{\text{Total Sales}}$
- 13. Enterprise Value = Market value of stocks + Market value of debt Cash and short term investments.

Market Organization and Structure

1. Margin call price = $P_0\left(\frac{1-\text{Initial margin}}{1-\text{maintenance margin}}\right)$ P_0 = Initial purchase price

Overview of Equity Securities

1. ROE =
$$\frac{NI_t}{(BV_1+BV_{t-1})/2}$$

ROE = $\frac{NI_t}{BV_{t-1}/2}$

2. DDM:
$$R_e = \frac{D_1}{P_o} + g$$

4. Market Price
$$\frac{C_1}{(1+r)} + \frac{C_2}{(1+r)^2} + \dots$$

Fixed Income

- 1. Conversion Ratio = $\frac{\text{Par Value of the Bond}}{\text{Conversion Price}}$
- 2. **Conversion Value =** Conversion Ratio × Current Market Price of a Common Share

- 10. Current Yield = $\frac{\text{anual coupon payment}}{\text{Bond price}}$
- 11. Option Value = Zspread OAS (Option Adjusted Spread)

Fixed-Income Securitization Asset-Backed Security (ABS) Instrument and Market Features Mortgage-Backed Security (MBS) Instrument and Market Features

- 1. Debt-to-service = $\frac{NOI}{debt \text{ service}}$; where debt service = principal + interest
- 2. Loan-to-value = $\frac{\text{current mortgage amount}}{\text{current appraised value}}$
- 3. Annualized Conditional prepayment rate (CPR) = 1 (1-SMM)¹²
- 4. Single month mortality (SMM) = 1 (1-CPR) ^{1/12}

Interest Rate Risk and Return Yield-Based Bond Duration Measures and Properties Yield-Based Bond Convexity and Portfolio Properties Curve-Based and Empirical Fixed-Income Risk Measures

- 1. Macaulay's Duration = wtd. Average of time, where W= PV of $CF = \frac{\Sigma WX}{\Sigma w}$ Modified Duration = $\frac{\text{macaulay's duration}}{1+\text{ytm/m}}$ \longrightarrow Compounding frequency
- 2. Modification Duration $\cap \cong E.D.$ [only for option free bonds]
- 3. Effective Duration (E.D.) = $\frac{P_2 P_1}{2\Delta Y P_0}$; ΔY = change in YTM
- 4. Effective Convexity (E.C.) = $\frac{P_2 + P_1 2P_0}{P_0 (\Delta Y)^2}$
- 5. Convexity adjustment = $\frac{1}{2} \times EC \times (\Delta Y)^2$
- 6. Money duration = annual modification duration x full price of bond position
- 7. Portfolio duration = $\sum w_i d_i$; W_i = market value rates
- 8. Change in full bond price = (-E.D. $\times \Delta Y$) + $\frac{1}{2} \times Ec \times (\Delta Y)^2$
- 9. Duration gap = Macaulay's duration investment horizon
- 10. Price Value of a Basis Point (PVBP) = $\frac{P_2 P_1}{2}$

Credit Risk

Credit Analysis for Government Issuers Credit Analysis for Corporate Issuers

- 1. Expected loss = exposure × prob of default (default risk) × loss severity (1-RR)
- 2. Credit risk = default risk + loss severity (1-RR)
- 3. Yield Spread = $YTM_{Credit risky bond} YTM_{risk free bond}$ Or,

Yield spread = liquidity premium + credit spread (will widen) affected by 2 factors:

- credit wordiness ↓(credit migration / downgrade risk)
- Market liquidity risk.
- 4. Enterprise Value = Equity + Debt Cash and Marketable Securities
- 5. Leverage Ratios:
 - Debt/Capital
 - Debt/EBITDA
 - FFO/Debt
 - FCF after dividends/Debt
- 6. Coverage Ratios:
 - EBITDA/Interest Expense
 - EBIT/Interest Expense

Derivatives

Forward Commitment and Contingent Claim Features and Instruments

1. Forward Price = Spot + Interest Cost + Storage Cost -Benefits.

Spot
$$(1 + R_F)^T$$
 + FV(Storage – Benefit)

2. The forward price of an asset to be delivered at time T is:

 $F_0(T) = S_0(1 + Rf)^T$

3. The value of a forward contract is zero at initiation: $V_t(T) = S_t - F_0(T) / (1+R_f)^{T-t}$

4. Payoff to FRA = $\frac{(\text{market rate-contracted rate}) \times NPx\frac{n}{12}}{1 + (\text{market rate } x\frac{n}{12})} \times \frac{n}{360}$ if no. of days

5. U = up factor

$$D = \frac{1}{11}$$

Probability risk neutral = $\lambda u = \frac{(1+Rf)^T - D}{U-D}$

Call option value = ($\lambda u \times C_1^+$) + ($\lambda D \times C_1^-$)

:. Today value = (co) = $\frac{\text{call option value}}{(1+Rf)}$

- 6. Option premium = intrinsic value + time value
- 7. Put call parity = $C_o + \frac{X}{(1+RF)^T} = P_o + S_o$
- 8. Put call forward parity = $C_o + \frac{X}{(1+RF)^T} = P_o + \frac{F}{(1+RF)^T}$ $\rightarrow C_o - P_o = \frac{F-X}{(1+RF)^T}$

Introduction to Alternative Investments

Portfolio

Portfolio management: An Overview

1. Diversification Ratio = $\frac{\text{Risk of equally weighted portfolio of 'n' securities}}{\text{Risk of single security at random from 'n' securities}}$

- 1. Holding period return = $\frac{\text{end of period value}}{\text{beginning of period value}} 1$
- 2. Arithmetic mean return = $\frac{(R_1+R_2+R_3+\dots+R_n)}{n}$
- 3. Geometric mean return = $\sqrt[n]{(1+R_1) \times (1+R_2) \times (1+R_3) ... \times (1+R_n)} 1$
- 4. Population variance: $\sigma^2 = \frac{\sum (x-\bar{x})^2}{n}$
- 5. Sample variance: $\sigma^2 = \frac{\sum (x \bar{x})^2}{n-1}$
- 6. Cov = $\sum (X E_x) (Y E_y) \times P$
- 7. $R_p = \sum W_i R_i$ and $E_{R_p} = \sum W_i E_{R_i}$
- 8. $\operatorname{Cov}_{1,2} = \frac{\sum (R_{t,1} \overline{R}_1) (R_{t,2} \overline{R}_2)}{n-1} = \frac{\sum (x \overline{x})(y \overline{y})}{n-1}$

9.
$$\rho_{x,y} = \frac{\text{Cov}(x,y)}{\sigma_x \sigma_y}$$

10.
$$\sigma_{\rm P} = \sqrt{\sigma_{\rm P}^2} = \sqrt{\sum w^2 \sigma^2 \sum w_i w_j \text{Cov}_{i,j}}$$

$$\sigma_{\rm P} = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_1 \sigma_2 r_{1,2}}$$

$$\sigma_{\rm P} = \sqrt{w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \text{Cov}_{1,2}}$$

- $\sigma_{P} = \sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + w_{3}^{2}\sigma_{3}^{2} + 2w_{1}w_{2}Cov_{1,2} + 2w_{2}w_{3}Cov_{2,3} + 2w_{1}w_{3}Cov_{1,3}}$
- 11. P/L from securities <u>- Commission and other Brokerage Expenses</u> Gross Return <u>- Management and Administration Fees</u>

Aversion (-ve)

Risk (-ve)

0

Risk Neutral

Net Return

Utility

(-ve)

Risk Seeking

- 12. After tax return = Pre-tax return (1-t)
- 13. Leveraged Return = $\frac{\frac{\text{gain}}{\text{loss}}\text{on Total Investment}}{\text{Investor's Cash Investment}}$ 14. Investor's Utility Function: $U = E(R) - \frac{1}{2}A\sigma^{2}$

↓

(+ve)

Return Risk

(+ve)

Risk Averse

Portfolio Risk and Return: Part II

1.
$$E(R_{P}) = (1 - w_{m})R_{f} + w_{m}R_{m}$$

$$= R_{f} + w_{m} (R_{m} - R_{f})$$

$$\sigma_{P} = \sqrt{(1 - w_{m})^{2}\sigma R_{f}^{2} + w_{m}^{2}\sigma_{m}^{2} + 2(1 - w_{m})\sigma_{Rf}\sigma_{Rm}r_{Rf}, R_{m}}$$
For R_{f} , $\sigma = 0$ and $Cov = 0$

$$\therefore \sigma_{P} = \sqrt{w_{m}^{2}\sigma_{m}^{2}} = \sigma_{m}w_{m}$$

$$\therefore w_{m} = \frac{\sigma_{P}}{\sigma_{m}}$$
2. Capital market line:
 $E(R_{P}) = R_{f} + \sigma_{P} \left[\frac{R_{m} - R_{f}}{\sigma_{m}^{2}}\right]$
3. $E(R_{i}) = R_{f} + \frac{E(R_{m}) - R_{i}}{\sigma_{m}^{2}} \times Cov_{i,m}$
Or $E(R_{i}) = R_{f} + \frac{Cov_{i,m}}{\sigma_{m}^{2}} [E(R_{m}) - R_{t}]$
4. $\beta = \frac{Cov_{i,m}}{\sigma_{m}^{2}} = r \frac{\sigma_{i}}{\sigma_{m}}$
5. Market Model:
 $R_{i} = \alpha_{i} + \beta_{i}R_{m} + \varepsilon_{i}$
6. Total risk = systematic risk + unsystematic risk
7. Single factor model:
 $E(R_{i}) - R_{f} = \beta_{i} \times [E(R_{m}) - R_{f}]$
8. Risk free portfolio: $W_{A} = \frac{\sigma_{B}}{\sigma_{A} + \sigma_{B}}$
9. Security Market Line:
 $R_{e} = R_{f} + \frac{Cov_{i,mkt}}{\sigma_{m}^{2}}(R_{m} - R_{f})$
10. $M - Squared = (R_{p} - R_{f})\frac{\sigma_{m}}{\sigma_{p}} - (R_{m} - R_{f})$
11. Sharpe Ratio $= \frac{R_{p} - R_{f}}{\sigma_{p}}$

- 13. Jensen's Alpha = $R_p CAPM$